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Abstract

Computed tomography angiography (CTA) allows for not only diagnosis of coronary artery 

disease (CAD) with high spatial resolution but also monitoring the remodeling of vessel walls in 

the progression of CAD. Alignment of coronary arteries in CTA images acquired at different times 

(with a 3–7 years interval) is required to visualize and analyze the geometric and structural 

changes quantitatively. Previous work in image registration primarily focused on large anatomical 

structures and leads to suboptimal results when applying to registration of coronary arteries. In this 

paper, we develop a novel method to directly align the straightened coronary arteries in the 

cylindrical coordinate system guided by the extracted centerlines. By using a Hidden Markov 

Model (HMM), image intensity information from CTA and geometric information of extracted 

coronary arteries are combined to align coronary arteries. After registration, the pathological 

features in two straightened coronary arteries can be directly visualized side by side by 

synchronizing the corresponding cross-sectional slices and circumferential rotation angles. By 

evaluating with manually labeled landmarks, the average distance error is 1.6 mm.

I. INTRODUCTION

Coronary artery disease (CAD) is one of the leading causes of death throughout the world 

[6]. Recently, computed tomography angiography (CTA) has emerged as a promising non-

invasive option for coronary angiography, with significant advances in temporal resolution 

and volume coverage now allowing for acquisition of virtually motion-free images at 

isotropic spatial resolution at 500 µm. Compared to invasive reference standards, CTA has 

been demonstrated to have high diagnostic accuracy for anatomic stenosis detection [5]. 

However, the large amount of data in a 3D CTA image also poses considerable challenges 

for accurate quantification and staging of CAD manifestation. Furthermore, diagnosis using 

multiple image volumes acquired of the same patient at different times (e.g. initial visit vs. 

follow-ups) is often needed in clinical practice to monitor the progression of CAD.

HHS Public Access
Author manuscript
Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2016 March 14.

Published in final edited form as:
Conf Proc IEEE Eng Med Biol Soc. 2015 August ; 2015: 1993–1996. doi:10.1109/EMBC.2015.7318776.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Like other human organs, coronary arteries constantly adapts to hemodynamic, metabolic, 

and inflammatory stimuli by geometric and structural remodeling of the vessel wall during 

the development of atherosclerosis. Although CTA allows for visualizing vessel walls with 

exquisite spatial resolution, temporal resolution remains limited. Deformation of coronary 

arteries inevitably occurs even during the same scan due to cardiac and respiratory motion. 

In addition, significant rigid (e.g. change in coordinate system and scanning direction) and 

nonrigid transformation (difference in patient pose, heart rate, acquisition time within the 

cardiac cycle) are also present in CTA images. To enable direct comparison of coronary 

artery anatomy, alignment of two different images is a prerequisite to allow for detection of 

actual wall remodeling, especially for the patients with stenosis of intermediate grades. 

Deformable image registration is an active research topic in medical image analysis and has 

been applied to align anatomical structures with different levels of success. However, most 

previous work has been focused on registration of structures with volumetric shapes. 

Although they can be applied to register coronary arteries with tubular shapes, the 

performance is usually suboptimal because the results tend to favor better alignment of 

neighboring structures with larger volume, e.g. myocardium and lungs. In this paper, we 

develop a novel automated method to register coronary arteries directly by using Hidden 

Markov Model [7] applied in the straightened vessel segments.

II. Methods

According to [8], medical image registration algorithms are composed of three key 

components: deformation model, matching criterion and optimization method. In this 

section, we will introduce our method following this schema. Section II-A will introduce our 

curve based deformation model, Section II-B illustrates the matching criterion and Section 

II-C will introduce optimization method designed for our model. Finally, Section II-D will 

describe the semi-automatic method we use to extract centerlines for completion.

A. Deformation Model

Deformation models used in medical image registration include simple parametric 

transforms such as rigid, similar, homogeneous transforms and more complex geometric 

transformations based on interpolation such as Thin Plate Spline model [1] or Free Form 

Deformations coupled with B-spline [2]. All these models are designed for general 

registration of structures with volumetric shapes. In this paper, we focus on alignment of 

coronary artery and propose a more efficient domain-specific deformation model. Instead of 

computing correspondences directly in Cartesian coordinate system, we first extract 

coronary artery centerlines from CTA image and then infer relative offset and rotation 

between them in cylindrical coordinate system.

Given an artery centerline, straightened curved planar reformation (SCRP) [4] is a common 

method for displaying coronary artery clinically. It defines a mapping from 3D space to 2D 

image plane, each horizontal line of which corresponds to a diameter of the circle centered 

at a specific point on the centerline. The vertical offset on SCRP indicates the geographic 

distance from the starting point of centerline. To identically determine a SCRP, an angle-of-

interest should be assigned to each point on the centerline because we have to select one 
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direction of the diameter on each cross-sectional slice. In practice, only the angle-of-interest 

of the starting point of the curve is sufficient to display a single tubular structure by using 

rotation-minimizing frames[9]. However, when comparing two different CTA images of the 

same patient, misalignment can be large before registration.

A curve used to generate SCRP can be represented as:

where t is geographic distance between a specific point and the starting point; L is the length 

of the curve; X(t), Y (t), Z(t) are the Euclidean coordinates and θ(t) represents the relative 

angle-of-interest (angle between a user-specific direction and the one inferred by using 

rotation-minimizing frames).

Given the fixed centerline Cf and moving centerline Cm, we define our deformation model 

as:

It pairs points from Cf and Cm by:

This model is sufficient to describe the actual deformation given artery centerline while 

simplifying the search space dramatically. In fact, we transform sophisticated free 3D 

registration problem to a more tractable one in cylindrical coordinate system (see Fig. 2).

In order to optimize our parametrized model, we discretize the curves by evenly sampling 

points from Cf and Cm with predefined step δl and discrete θ with step δθ. After that, 

deformation model can be described just by a series of discrete status on the fixed curve:

where i and Nf are the index and total number of sampled points on Cf respectively, l and dθ 

represent the discretized location and relative rotation of the corresponding point of ith 

control point on Cm. The curve between consecutive points with a small interval should be 

smooth, so we further sample the control points with a fixed interval K. Overall, our model 

can be concisely described by:
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The status of inner points can be naturally interpolated linearly. Discretion and sub-sampling 

decreases the theoretical high bound of registration accuracy, but can achieve better result in 

practice because it avoids potential over-fitting and makes the global optimization more 

tractable.

B. Matching Criterion

In [8], the authors separated matching criterion and regulation term for clarity. In this work, 

we just treat them as two types of similarity - image similarity (matching criterion) and 

geometric similarity (regulation). Although status in our model are defined on each point, 

similarity is measured pair-wisely because segment correspondence determined by two 

consecutive status is much more robust than a single pair of cross-sectional slices.

Here, normalized correlation coefficient (NCC) is adopted to measure the similarity between 

images. For ith segment, we generate two cylinder  and  around moving and fixed 

centerline:

where Cylinder(I, C, θ, start, end) extracts cylinder around centerline C from image I. θ, 

start, end indicate angle-of-interest, start point and end point of curve segment of interest 

respectively. Certain layers (10 in our experiment) of cross-sectional slice compose a 

cylinder and for each layer of a cylinder, we sample the voxels with step δR radially and δθ 

circumferentially on cross-sectional slice within radius R. Finally, the image similarity of ith 

segment is:

Deformation regulation is also imposed because the length of centerline should not vary too 

much and relative angle should change smoothly. We limit the change of the angle between 

two consecutive control points to Θmax and the length to [rmin, rmax]*K*δl. Within that 

reasonable range, a pairwise similarity term Pgeo is used to regulate the deformation:

In summary, the similarity between two arteries given  is represented by:
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C. Optimization Method

To accelerate our algorithm, we adopt a coarse-to-fine strategy. First, we coarsely align two 

arteries with single offset and rotation. It aligns two centerlines coarsely with a rigid 

transform under cylinderical coordinate system.

In the second step, the alignment is refined by an optimization problem:

Notice J only relies on pairwise discrete status. Our problem is a specific case of Hidden 

Markov Model without an unary term and Viterbi algorithm can be used to infer the global 

maximum [7].

D. Centerline Extraction

Because our attention is on registration, we just implement an simple two-point method 

based on shortest path with Frangi vesselness [3]. Registration process we proposed does not 

account for relative offset on the normal plane, so it is sensitive to the inaccuracy of 

centerline extraction. To minimize the influence of limited accuracy of our simple extraction 

algorithm, centerlines are slightly manually refined with the help of a learning-based lumen 

segmentation method.

III. Experiments

In this work, our experiments were performed on five pairs of CTA images1. Each pair was 

acquired with an interval of 3–7 years. Left anterior descending artery (LAD), left 

circumflex artery (LCX), right coronary artery (RCA) were extracted from every CTA 

image and the algorithm proposed in this work was used to align them. Parameters are fixed 

in all cases, as listed in Table I (simg represents the default value of Pimg when corresponding 

point is out of the range).

Fig. 3 and Fig. 4 show the examples of SCRPs and cross-sectional slices before and after 

registration. After registration, two centerlines are better aligned. Fig. 5 shows two cases 

with stenosis and calcification in detail, where the automatic alignment result is close to 

manual alignment and visualization of pathological features is clear.

To quantitatively evaluate the accuracy of our algorithm, we manually label 7–24 

corresponding landmarks of each pair of coronary arteries that can accurately align fixed and 

moving coronary artery centerlines with Thin Plane Spline [1]. Our algorithm is evaluated 

by comparing the average distance between the transformed points and the manually labeled 

ones. The average distance error is 1.6 mm. In Table II, Eg+i indicates the average distance 

error and standard deviation of each pair of artery using our algorithm and Ei indicates 

results when we relax geometric constraints (wgeo = 0, rmin,max = [0.6, 1.4] and Θmax = 30°). 

It is clear that both image and geometry are important.

1The experimental procedures involving human subjects described in this paper were approved by the Institutional Review Board.
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IV. CONCLUSIONS and Future Work

In this work, we propose an algorithm to align two arteries of the same patient acquired with 

an interval of 3–7 years. Experiments shows that our algorithm can achieve a good accuracy 

according to manual registration and pathological features can be directly visualized side by 

side.

Since our algorithm relies on the extraction of artery centerlines, the registration will fail if 

the extracted centerline is far away from the true centerline. Improvements to handle 

inaccurate centerlines will be our future work.
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Fig. 1. 
Flowchart of our method. We first extract centerlines from two CTA images acquired at 

different times and utilize the image information around centerline to align them.
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Fig. 2. 
An illustration of our deformation model. To align two arteries, two variables are assigned 

to each point (represented by its cross-sectional slice) from a fixed centerline(left) - dθ 

determines the relative rotation and l counts for offset along the centerline. Dash circles on 

the right column indicate the interpolated points between control points.
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Fig. 3. 
An example of our registration result. The three rows are some cross-sectional slices that are 

sampled around moving centerline, fixed centerline and aligned centerline, respectively. The 

columns show different locations along the centerline.
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Fig. 4. 
An example of our registration result. The three rows of SCRP are generated from moving 

centerline, fixed centerline and aligned centerline respectively. The columns represent 

different corresponding angles of interest.
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Fig. 5. 
Cases of stenosis and calcification.
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TABLE I

Parameters used in our algorithm.

Parameter(s) Value

δl,δθ 1 mm,10°

K 10

wimg, wgeo 0.7,0.3

simg 0.7

Θmax 10°

rmin, rmax 0.8, 1.2

R, δR 10 mm, 0.5 mm
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TABLE II

Average distance error and standard deviation.

Artery Number Ei (mm) Eg+i (mm)

LAD1 2.00 ± 0.90 1.89 ± 0.68

LCX1 1.48 ± 1.05 1.25 ± 0.66

RCA1 1.55 ± 0.87 1.33 ± 0.89

LAD2 1.96 ± 1.45 1.39 ± 0.59

LCX2 2.59 ± 1.99 1.50 ± 0.98

RCA2 6.25 ± 6.04 2.12 ± 1.25

LAD3 2.53 ± 1.60 2.08 ± 1.44

LCX3 2.14 ± 2.69 2.03 ± 1.57

RCA3 1.66 ± 1.13 1.14 ± 0.51

LAD4 1.70 ± 1.08 1.35 ± 0.68

LCX4 1.38 ± 0.63 1.19 ± 0.60

RCA4 2.92 ± 2.05 1.75 ± 0.82

LAD5 2.11 ± 1.58 1.28 ± 0.80

LCX5 3.37 ± 2.90 1.49 ± 0.81

RCA5 2.45 ± 1.54 2.19 ± 1.19

Average 2.40 ± 2.50 1.60 ± 1.00

Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2016 March 14.


